171 research outputs found

    Four-Dimensional Neuronal Signaling by Nitric Oxide: A Computational Analysis

    Get PDF
    Nitric oxide (NO) is now recognized as a transmitter of neurons that express the neuronal isoform of the enzyme nitric oxide synthase. NO, however, violates some of the key tenets of chemical transmission, which is classically regarded as occurring at points of close apposition between neurons. It is the ability of NO to diffuse isotropically in aqueous and lipid environments that has suggested a radically different form of signaling in which the transmitter acts four-dimensionally in space and time, affecting volumes of the brain containing many neurons and synapses. Although ¿volume signaling¿ clearly challenges simple connectionist models of neural processing, crucial to its understanding are the spatial and temporal dynamics of the spread of NO within the brain. Existing models of NO diffusion, however, have serious shortcomings because they represent solutions for ¿point-sources,¿ which have no physical dimensions. Methods for overcoming these difficulties are presented here, and results are described that show how NO spreads from realistic neural architectures with both simple symmetrical and irregular shapes. By highlighting the important influence of the geometry of NO sources, our results provide insights into the four-dimensional spread of a diffusing messenger. We show for example that reservoirs of NO that accumulate in volumes of the nervous system where NO is not synthesized contribute significantly to the temporal and spatial dynamics of NO spread

    Synchronisation effects on the behavioural performance and information dynamics of a simulated minimally cognitive robotic agent

    Get PDF
    Oscillatory activity is ubiquitous in nervous systems, with solid evidence that synchronisation mechanisms underpin cognitive processes. Nevertheless, its informational content and relationship with behaviour are still to be fully understood. In addition, cognitive systems cannot be properly appreciated without taking into account brain–body– environment interactions. In this paper, we developed a model based on the Kuramoto Model of coupled phase oscillators to explore the role of neural synchronisation in the performance of a simulated robotic agent in two different minimally cognitive tasks. We show that there is a statistically significant difference in performance and evolvability depending on the synchronisation regime of the network. In both tasks, a combination of information flow and dynamical analyses show that networks with a definite, but not too strong, propensity for synchronisation are more able to reconfigure, to organise themselves functionally and to adapt to different behavioural conditions. The results highlight the asymmetry of information flow and its behavioural correspondence. Importantly, it also shows that neural synchronisation dynamics, when suitably flexible and reconfigurable, can generate minimally cognitive embodied behaviour

    Flexible couplings: diffusing neuromodulators and adaptive robotics

    Get PDF
    Recent years have seen the discovery of freely diffusing gaseous neurotransmitters, such as nitric oxide (NO), in biological nervous systems. A type of artificial neural network (ANN) inspired by such gaseous signaling, the GasNet, has previously been shown to be more evolvable than traditional ANNs when used as an artificial nervous system in an evolutionary robotics setting, where evolvability means consistent speed to very good solutions¿here, appropriate sensorimotor behavior-generating systems. We present two new versions of the GasNet, which take further inspiration from the properties of neuronal gaseous signaling. The plexus model is inspired by the extraordinary NO-producing cortical plexus structure of neural fibers and the properties of the diffusing NO signal it generates. The receptor model is inspired by the mediating action of neurotransmitter receptors. Both models are shown to significantly further improve evolvability. We describe a series of analyses suggesting that the reasons for the increase in evolvability are related to the flexible loose coupling of distinct signaling mechanisms, one ¿chemical¿ and one ¿electrical.

    The chaotic dynamics and multistability of two coupled Fitzhugh-Nagumo model neurons

    Get PDF
    In this short paper we present a detailed analysis of the dynamics of a system of two coupled Fitzhugh-Nagumo neuron equations with tonic descending command signals, suitable for modelling circuits underlying the generation of motor behaviours. We conduct a search of possible attractors and calculate dynamical quantities, such as the Largest Lyapunov Exponents (LLEs), at a fine resolution over the areas of parameter space where complex and chaotic dynamics are most likely, to build a more detailed picture of the dynamical regimes of the system, focusing on the most complex solutions. By building a precise LLE map, we identify a narrow region of parameter space of particular interest, rich with chaotic and multistable dynamics, and show that it is on the border of criticality. This allows us to draw conclusions about possible neural mechanisms underlying the generation of chaotic dynamics. We illustrate the detailed ecology of multiple attractors in the system by listing, characterising and grouping all the stable attractors in the parameter range of interest. This allows us to pinpoint the regions with complex multistability. The greater understanding thus provided is intended to help future studies on the roles of chaotic dynamics in biological motor control, and their application in robotics; particularly by giving a deeper insight into how input signals and control parameters shape the system’s dynamics which can be exploited in chaos driven adaptation

    Embodied neuromechanical chaos through homeostatic regulation

    Get PDF
    In this paper, we present detailed analyses of the dynamics of a number of embodied neuromechanical systems of a class that has been shown to efficiently exploit chaos in the development and learning of motor behaviors for bodies of arbitrary morphology. This class of systems has been successfully used in robotics, as well as to model biological systems. At the heart of these systems are neural central pattern generating (CPG) units connected to actuators which return proprioceptive information via an adaptive homeostatic mechanism. Detailed dynamical analyses of example systems, using high resolution largest Lyapunov exponent maps, demonstrate the existence of chaotic regimes within a particular region of parameter space, as well as the striking similarity of the maps for systems of varying size. Thanks to the homeostatic sensory mechanisms, any single CPG “views” the whole of the rest of the system as if it was another CPG in a two coupled system, allowing a scale invariant conceptualization of such embodied neuromechanical systems. The analysis reveals chaos at all levels of the systems; the entire brain-body-environment system exhibits chaotic dynamics which can be exploited to power an exploration of possible motor behaviors. The crucial influence of the adaptive homeostatic mechanisms on the system dynamics is examined in detail, revealing chaotic behavior characterized by mixed mode oscillations (MMOs). An analysis of the mechanism of the MMO concludes that they stems from dynamic Hopf bifurcation, where a number of slow variables act as “moving” bifurcation parameters for the remaining part of the system

    The Evolution of Reaction-diffusion Controllers for Minimally Cognitive Agents

    Get PDF
    No description supplie

    Sensorimotor coordination and metastability in a situated HKB model

    Get PDF
    Oscillatory phenomena are ubiquitous in nature and have become particularly relevant for the study of brain and behaviour. One of the simplest, yet explanatorily powerful, models of oscillatory Coordination Dynamics is the Haken–Kelso–Bunz (HKB) model. The metastable regime described by the HKB equation has been hypothesised to be the signature of brain oscillatory dynamics underlying sensorimotor coordination. Despite evidence supporting such a hypothesis, to our knowledge, there are still very few models (if any) where the HKB equation generates spatially situated behaviour and, at the same time, has its dynamics modulated by the behaviour it generates (by means of the sensory feedback resulting from body movement). This work presents a computational model where the HKB equation controls an agent performing a simple gradient climbing task and shows (i) how different metastable dynamical patterns in the HKB equation are generated and sustained by the continuous interaction between the agent and its environment; and (ii) how the emergence of functional metastable patterns in the HKB equation – i.e. patterns that generate gradient climbing behaviour – depends not only on the structure of the agent's sensory input but also on the coordinated coupling of the agent's motor–sensory dynamics. This work contributes to Kelso's theoretical framework and also to the understanding of neural oscillations and sensorimotor coordination

    Seeing the light: artificial evolution, real vision

    Get PDF
    This paper describes results from a specialised piece of visuo-robotic equipment which allows the artificial evolution of control systems for visually guided autonomous agents acting in the real world. Preliminary experiments with the equipment are described in which dynamical recurrent networks and visual sampling morphologies are concurrently evolved to allow agents to robustly perform simple visually guided tasks. Some of these control systems are shown to exhibit a surprising degree of adaptiveness when tested against generalised versions of the task for which they were evolved
    corecore